A Rapid Magnetofluidic Micromixer Using Diluted Ferrofluid
File version
Version of Record (VoR)
Author(s)
Nam-Trung, Nguyen
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Effective and rapid mixing is essential for various chemical and biological assays. The present work describes a simple and low-cost micromixer based on magnetofluidic actuation. The device takes advantage of magnetoconvective secondary flow, a bulk flow induced by an external magnetic field, for mixing. A superparamagnetic stream of diluted ferrofluid and a non-magnetic stream are introduced to a straight microchannel. A permanent magnet placed next to the microchannel induced a non-uniform magnetic field. The magnetic field gradient and the mismatch in magnetic susceptibility between the two streams create a body force, which leads to rapid and efficient mixing. The micromixer reported here could achieve a high throughput and a high mixing efficiency of 88% in a relatively short microchannel.
Journal Title
Micromachines
Conference Title
Book Title
Edition
Volume
8
Issue
2
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2017 The Author(s). Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Microelectromechanical systems (MEMS)
Nanotechnology