A Comparison between heat transfer performance of rectangular and semicircular tubes considering boundary effects on Brownian motions in the presence of Ag / water nanofluids: Applicable in the design of cooling system of photovoltaic cells
File version
Version of Record (VoR)
Author(s)
Aberoumand, Sadegh
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
The present study aims to experimentally investigate heat transfer performance of rectangular and semicircular tubes in the presence of Ag / water nanofluids. The nanoparticles of Ag (silver) were used in seven different volume concentrations of 0.03%, 0.07%, 0.1%, 0.2%, 0.4%, 1% and 2%. The experiment was conducted in relatively low Reynolds numbers of 301 to 740. A heater with the power of 200 W was used to keep the outer surface of the tubes under a constant heat flux condition. In addition, the rectangular tube has been designed within the same length as the semicircular one and also within the same hydraulic diameter. Moreover, the average nanoparticles size was 20 nm. The outcome results of the present empirical work indicate that, for all the examined Reynolds numbers, the semicircular tube has higher convective heat transfer coefficient for all the utilized volume concentrations of Ag nanoparticles. The possible reasons behind this advantage are discussed through the present work mainly by taking the boundary effect on Brownian motions into account. Coming to this point that the conventional design for cooling system of photovoltaic cells is a heat sink with the rectangular graves, it is discussed that using a semicircular design may have the advantage over the rectangular one in convective heat transfer coefficient enhancement and hence a better cooling performance for these solar cells.
Journal Title
PLoS One
Conference Title
Book Title
Edition
Volume
12
Issue
7
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2017 Jafarimoghaddam, Aberoumand. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Nanotechnology
Microfluidics and nanofluidics
Science & Technology
Multidisciplinary Sciences
Science & Technology - Other Topics
REGIME
Persistent link to this record
Citation
Jafarimoghaddam, A; Aberoumand, S, A Comparison between heat transfer performance of rectangular and semicircular tubes considering boundary effects on Brownian motions in the presence of Ag / water nanofluids: Applicable in the design of cooling system of photovoltaic cells, PLoS One, 2017, 12 (7)