Immunological properties and protective efficacy of a single mycobacterial antigen displayed on polyhydroxybutyrate beads
File version
Version of Record (VoR)
Author(s)
Parlane, Natalie A
Buddle, Bryce M
Wedlock, D Neil
Rehm, Bernd HA
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
In 2015, there were an estimated 10.4 million new tuberculosis (TB) cases and 1.4 million deaths worldwide. Bacille Calmette–Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the vaccine available against TB, but it is insufficient for global TB control. This study evaluated the immunogenicity of the Mycobacterium tuberculosis antigen Rv1626 in mice while assessing the effect of co-delivering either Cpe30 (immunostimulatory peptide), CS.T3378–395 (promiscuous T helper epitope) or flagellin (TLR5 agonist) or a combination of all three immunostimulatory agents. Rv1626 and the respective immunostimulatory proteins/peptides were co-displayed on polyhydroxybutyrate beads assembled inside an engineered endotoxin-free mutant of Escherichia coli. Mice vaccinated with these beads produced immune responses biased towards Th1-/Th17-type responses, but inclusion of Cpe30, CS.T3378–395 and flagellin did not enhance immunogenicity of the Rv1626 protein. This was confirmed in a M. bovis challenge experiment in mice, where Rv1626 beads reduced bacterial cell counts in the lungs by 0.48 log10 compared with the adjuvant alone control group. Co-delivery of immunostimulatory peptides did not further enhance protective immunity.
Journal Title
Microbial Biotechnology
Conference Title
Book Title
Edition
Volume
10
Issue
6
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Item Access Status
Note
This publication has been entered into Griffith Research Online as an Advanced Online Version.
Access the data
Related item(s)
Subject
Microbiology
Microbiology not elsewhere classified