CLIGEN parameter regionalization for mainland China
File version
Version of Record (VoR)
Author(s)
Yin, Shuiqing
Yu, Bofu
Wang, Shaodong
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
The stochastic weather generator CLIGEN can simulate long-term weather sequences as input to WEPP for erosion predictions. Its use, however, has been somewhat restricted by limited observations at high spatial-temporal resolutions. Long-term daily temperature, daily, and hourly precipitation data from 2405 stations and daily solar radiation from 130 stations distributed across mainland China were collected to develop the most critical set of site-specific parameter values for CLIGEN. Ordinary kriging (OK) and universal kriging (UK) with auxiliary covariables, i.e., longitude, latitude, elevation, and the mean annual rainfall, were used to interpolate parameter values into a 10km×10km grid, and the interpolation accuracy was evaluated based on the leave-one-out cross-validation. Results showed that UK generally outperformed OK. The root mean square error between UK-interpolated and observed temperature-related parameters was ≤0.88g C (1.58g F). The Nash-Sutcliffe efficiency coefficient for precipitation- and solar-radiation-related parameters was ≥0.87, except for the skewness coefficient of daily precipitation, which was 0.78. In addition, CLIGEN-simulated daily weather sequences using UK-interpolated and observed parameters showed consistent statistics and frequency distributions. The mean absolute discrepancy between the two sequences for temperature was <0.51g C, and the mean absolute relative discrepancy for solar radiation, precipitation amount, duration, and maximum 30ĝ€¯min intensity was <5ĝ€¯% in terms of the mean and standard deviation. These CLIGEN parameter values at 10ĝ€¯km resolution would meet the minimum data requirements for WEPP application throughout mainland China. The dataset is available at http://clicia.bnu.edu.cn/data/cligen.html (last access: 20 May 2021) and 10.12275/bnu.clicia.CLIGEN.CN.gridinput.001 (Wang et al., 2020). Copyright:
Journal Title
Earth System Science Data
Conference Title
Book Title
Edition
Volume
13
Issue
6
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.
Item Access Status
Note
Access the data
Related item(s)
Subject
Atmospheric sciences
Geochemistry
Physical geography and environmental geoscience
Science & Technology
Physical Sciences
Geosciences, Multidisciplinary
Meteorology & Atmospheric Sciences
Geology
Persistent link to this record
Citation
Wang, W; Yin, S; Yu, B; Wang, S, CLIGEN parameter regionalization for mainland China, Earth System Science Data, 2021, 13 (6), pp. 2945-2962