Advancement in materials for energy-saving lighting devices

Loading...
Thumbnail Image
File version
Author(s)
Kim, Tak H
Wang, Wentai
Li, Qin
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2012
Size

1317894 bytes

File type(s)

application/pdf

Location
License
Abstract

This review provides a comprehensive account of energy efficient lighting devices, their working principles and the advancement of these materials as an underpinning to the development of technology. Particular attention has been given to solid state lighting devices and their applications since they have attracted the most interest and are the most promising. Solid state lighting devices including white light emitting diodes (LEDs), organic LEDs (OLEDs), quantum-dot LEDs (QLEDs) and carbon-dot LEDs (CLEDs) are promising energy efficient lighting sources for displays and general lighting. However there is no universal solution that will give better performance and efficiency for all types of applications. LEDs are replacing traditional lamps for both general lighting and display applications, whereas OLEDs are finding their own special applications in various areas. QLEDs and CLEDs have advantages such as high quantum yields, narrow emission spectra, tunable emission spectra and good stability over OLEDs, so applications for these devices are being extended to new types of lighting sources. There is a great deal of research on these materials and their processing technologies and the commercial viability of these technologies appears strong.

Journal Title

Frontiers of Chemical Science and Engineering

Conference Title
Book Title
Edition
Volume

6

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2012 Springer-Verlag Berlin Heidelberg. This is an electronic version of an article published in Frontiers of Chemical Science and Engineering, Vol. 6(1), pp. 13-26, 2012. Frontiers of Chemical Science and Engineering is available online at: http://link.springer.com/ with the open URL of your article.

Item Access Status
Note
Access the data
Related item(s)
Subject

Other chemical sciences not elsewhere classified

Chemical engineering

Persistent link to this record
Citation
Collections