Innovative Therapies for Neuroblastoma: The Surprisingly Potent Role of Iron Chelation in Up-Regulating Metastasis and Tumor Suppressors and Down-Regulating the Key Oncogene, N-myc

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
Wijesinghe, Tharushi P
Dharmasivam, Mahendiran
Dai, Charles C
Richardson, Des R
Primary Supervisor
Other Supervisors
Editor(s)
Date
2021
Size
File type(s)
Location
Abstract

Iron is an indispensable requirement for essential biological processes in cancer cells. Due to the greater proliferation of neoplastic cells, their demand for iron is considerably higher relative to normal cells, making them highly susceptible to iron depletion. Understanding this sensitive relationship led to research exploring the effect of iron chelation therapy for cancer treatment. The classical iron-binding ligand, desferrioxamine (DFO), has demonstrated effective anti-proliferative activity against many cancer-types, particularly neuroblastoma tumors, and has the surprising activity of down-regulating the potent oncogene, N-myc, which is a major oncogenic driver in neuroblastoma. Even more remarkable is the ability of DFO to simultaneously up-regulate the potent metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which plays a plethora of roles in suppressing a variety of oncogenic signaling pathways. However, DFO suffers the disadvantage of demonstrating poor membrane permeability and short plasma half-life, requiring administration by prolonged subcutaneous or intravenous infusions. Considering this, the specifically designed di-2-pyridylketone thiosemicarbazone (DpT) series of metal-binding ligands was developed in our laboratory. The lead agent from the first generation DpT series, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), showed exceptional anti-cancer properties compared to DFO. However, it exhibited cardiotoxicity in mouse models at higher dosages. Therefore, a second generation of agents was developed with the lead compound being di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) that progressed to Phase I clinical trials. Importantly, DpC showed better anti-proliferative activity than Dp44mT and no cardiotoxicity, demonstrating effective anti-cancer activity against neuroblastoma tumors in vivo.

Journal Title

Pharmacological Research

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2021 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.

Item Access Status
Note

This publication has been entered in Griffith Research Online as an advanced online version.

Access the data
Related item(s)
Subject

Bioinorganic chemistry

Pharmacology and pharmaceutical sciences

N-myc

N-myc downstream-regulated gene-1

Neuroblastoma

di-2-pyridylketone thiosemicarbazone

iron chelation

Persistent link to this record
Citation

Wijesinghe, TP; Dharmasivam, M; Dai, CC; Richardson, DR, Innovative Therapies for Neuroblastoma: The Surprisingly Potent Role of Iron Chelation in Up-Regulating Metastasis and Tumor Suppressors and Down-Regulating the Key Oncogene, N-myc, Pharmacological Research, 2021, pp. 105889

Collections