Collision Avoidance Systems for Mine Haul Trucks and Unambiguous Dynamic Real Time Single Object Detection

Loading...
Thumbnail Image
File version
Primary Supervisor

Sanzongi, Louis

Other Supervisors

Foster, John

Editor(s)
Date
2005
Size
File type(s)
Location
License
Abstract

A suite of new collision avoidance systems (CAS) is presented for use in heavy vehicles whose structure and size necessarily impede driver visibility is introduced. The main goal of the project is to determine the appropriate use of each of the commercially available technologies and, where possible, produce a low cost variant suitable for use in proximity detection on large mining industry haul trucks. CAS variants produced were subjected to a field demonstration and, linked to the output from the earlier CAS 1 project, (a production high-definition in-cabin video monitor and r/f tagging system). The CAS 2 system used low cost Doppler continuous wave radar antennae coupled to the CAS 1 monitor to indicate the presence of an object moving at any speed above 3 Km/h relative to the antennae. The novelty of the CAS 3 system lies in the design of 3 interconnected, modules. The modules are 8 radar antennae (as used in CAS 2) modules located on the truck, software to interface with the end user (i.e. the drivers of the trucks) and a display unit. Modularisation enables the components to be independently tested, evaluated and replaced when in use. The radar antennae modules and the system as a whole are described together with the empirical tests conducted and results obtained. The tests, drawing on Monte-Carlo simulation techniques, demonstrate both the 'correctness' of the implementations and the effectiveness of the system. The results of the testing of the final prototype unit were highly successful both as a computer simulation level and in practical tests on light vehicles. A number of points, (as a consequence of the field test), are reviewed and their application to future projects discussed.

Journal Title
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type

Thesis (PhD Doctorate)

Degree Program

Doctor of Philosophy (PhD)

School

Griffith Business School

Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

The author owns the copyright in this thesis, unless stated otherwise.

Item Access Status

Public

Note
Access the data
Related item(s)
Subject

Collision avoidance systems

mine haul trucks

Doppler continuous wave antennae

unambiguous dynamic real time single object detection

Persistent link to this record
Citation