Crystallisation and structural details of Ca2+ induced conformational changes in the EF-hand domain VI of Calpain
File version
Author(s)
Grochulski, P
Blanchard, H
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Calpains are calcium-regulated neutral cysteine proteases that include ubiquitous, as well as tissue-specific, isoforms. The ubiquitous isoforms, μ- and m-calpains are intracellular, nonlysosomal proteases (1). The tissue-specific isoforms include calpain 3, which is found in skeletal muscle, and stomach-specific nCL–2 (2). The calpains catalyze limited proteolysis of substrates involved in cytoskeletal remodeling and signal transduction, although definitive physiological roles are not yet ascertained. They are also thought to contribute to the tissue damage that follows ischemia and reperfusion in conditions such as stroke and cardiac infarct (3,4), stimulating a search for specific and clinically acceptable inhibitors aimed at both the active site and also the Ca2+-binding domains (5). The calpains are heterodimers that consist of an 80-kDa catalytic subunit (the large subunit), and a 30-kDa regulatory subunit (the small subunit).
Journal Title
Conference Title
Book Title
Methods in Molecular Biology
Edition
Volume
172
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Other chemical sciences
Biochemistry and cell biology