Micromixer based on viscoelastic flow instability at low Reynolds number

Loading...
Thumbnail Image
File version
Author(s)
Lam, YC
Gan, HY
Nguyen, NT
Lie, H
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2009
Size

495599 bytes

File type(s)

application/pdf

Location
License
Abstract

We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re谮023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 峮 Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability.Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing.

Journal Title

Biomicrofluidics

Conference Title
Book Title
Edition
Volume

3

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Biomicrofluidics, Vol. 3, pp. 014106-1-014106-13, 2009 and may be found at http://dx.doi.org/10.1063/1.3108462.

Item Access Status
Note
Access the data
Related item(s)
Subject

Classical physics

Engineering practice and education not elsewhere classified

Nanotechnology

Persistent link to this record
Citation
Collections