Highly stable supercapacitors with MOF-derived Co9S8/carbon electrodes for high rate electrochemical energy storage

No Thumbnail Available
File version
Author(s)
Zhang, Shuo
Li, Daohao
Chen, Shuai
Yang, Xianfeng
Zhao, Xiaoliang
Zhao, Quansheng
Komarneni, Sridhar
Yang, Dongjiang
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2017
Size
File type(s)
Location
License
Abstract

Co9S8 has received intensive attention as an electrode material for electrical energy storage (EES) systems due to its unique structural features and rich electrochemical properties. However, the instability and inferior rate capability of the Co9S8 electrode material during the charge/discharge process has restricted its applications in supercapacitors (SCs). Here, MOF-derived Co9S8 nanoparticles (NPs) embedded in carbon co-doped with N and S (Co9S8/NS–C) were synthesized as a high rate capability and super stable electrode material for SCs. The Co9S8/NS–C material was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). It was found that the Co9S8/NS–C material possessed a unique nanostructure in which Co9S8 NPs were encapsulated in porous graphitic carbon co-doped with N and S. The N/S co-doped porous graphitic carbon of composite led to improved rate performance by enhancing the stability of the electrode material and shortening the ion diffusion paths due to a synergistic effect. The as-prepared Co9S8/NS–C-1.5 h material exhibited a high specific capacitance of 734 F g−1 at a current density of 1 A g−1, excellent rate capability (653 F g−1 at 10 A g−1) and superior cycling stability, i.e., capacitance retention of about 99.8% after 140 000 cycles at a current density of 10 A g−1. Thus, a new approach to fabricate promising electrode materials for high-performance SCs is presented here.

Journal Title

Journal of Materials Chemistry A: Materials for Energy and Sustainability

Conference Title
Book Title
Edition
Volume

5

Issue

24

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Macromolecular and materials chemistry

Materials engineering

Materials engineering not elsewhere classified

Other engineering

Persistent link to this record
Citation
Collections