The role of alemtuzumab in the development of secondary autoimmunity in multiple Sclerosis: a systematic review

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Jimenez-Sanchez, Sofia
Maksoud, Rebekah
Eaton-Fitch, Natalie
Marshall-Gradisnik, Sonya
Broadley, Simon A
Primary Supervisor
Other Supervisors
Editor(s)
Date
2024
Size
File type(s)
Location
Abstract

Background Secondary autoimmune disease (SAID) in the context of alemtuzumab treatment is one of the main safety concerns that may arise following administration in people with multiple sclerosis (pwMS). Contributing factors underlying this adverse event are not well understood. The purpose of this systematic review was to appraise the literature investigating the role of alemtuzumab in the development of SAID in pwMS following treatment and identify potential biomarkers/ risk factors that may be predictive of onset of this manifestation.

Methods Relevant publications were retrieved from PubMed, Embase, and Web of Science using a three-pronged search strategy containing the following keywords: “multiple sclerosis”; “alemtuzumab”; and “autoimmunity”. Studies that fulfilled the specified eligibility criteria and investigated SAID development after alemtuzumab in pwMS were included in the final analysis.

Results 19 papers were included in the final review. Approximately, 47.92% of pwMS treated with alemtuzumab experienced SAID. A variety of biomarkers and risk factors were noted in the development of SAID, with a focus on immunological changes, including: increased homeostatic proliferation and T cell cycling, along with consistently elevated baseline serum IL-21 levels and thyroid autoantibodies. There was no significant association between known human leukocyte antigen (HLA) risk alleles, lymphocyte profile or dynamics and SAID development.

Conclusions While the mechanism underlying SAID following alemtuzumab is not fully understood, potential biomarkers and risk factors that may assist in elucidating mechanisms underlying this phenomenon have been documented in several independent studies. Following immunodepletion from alemtuzumab, an IL-21 driven increase in homeostatic proliferation and T cell cycling may disrupt tolerance mechanisms leading to an increase in the propensity toward alemtuzumab-induced autoimmunity. Further research is necessary to clarify the physiological changes after alemtuzumab therapy that trigger SAID in pwMS.

Journal Title

Journal of Neuroinflammation

Conference Title
Book Title
Edition
Volume

21

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Author(s) 2024. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Item Access Status
Note
Access the data
Related item(s)
Subject

Immunology

Neurosciences

Persistent link to this record
Citation

Jimenez-Sanchez, S; Maksoud, R; Eaton-Fitch, N; Marshall-Gradisnik, S; Broadley, SA, The role of alemtuzumab in the development of secondary autoimmunity in multiple Sclerosis: a systematic review, Journal of Neuroinflammation, 2024, 21, pp. 281

Collections