Hip contact forces can be predicted with a neural network using only synthesised key points and electromyography in people with hip osteoarthritis

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Cornish, BM
Pizzolato, C
Saxby, DJ
Xia, Z
Devaprakash, D
Diamond, LE
Primary Supervisor
Other Supervisors
Editor(s)
Date
2024
Size
File type(s)
Location
Abstract

Objective: To develop and validate a neural network to estimate hip contact forces (HCF), and lower body kinematics and kinetics during walking in individuals with hip osteoarthritis (OA) using synthesised anatomical key points and electromyography. To assess the capability of the neural network to detect directional changes in HCF resulting from prescribed gait modifications. Design: A calibrated electromyography-informed neuromusculoskeletal model was used to compute lower body joint angles, moments, and HCF for 17 participants with mild-to-moderate hip OA. Anatomical key points (e.g., joint centres) were synthesised from marker trajectories and augmented with bias and noise expected from computer vision-based pose estimation systems. Temporal convolutional and long short-term memory neural networks (NN) were trained using leave-one-subject-out validation to predict neuromusculoskeletal modelling outputs from the synthesised key points and measured electromyography data from 5 hip-spanning muscles. Results: HCF was predicted with an average error of 13.4 ± 7.1% of peak force. Joint angles and moments were predicted with an average root-mean-square-error of 5.3 degrees and 0.10 Nm/kg, respectively. The NN could detect changes in peak HCF that occur due to gait modifications with good agreement with neuromusculoskeletal modelling (r2 = 0.72) and a minimum detectable change of 9.5%. Conclusion: The developed neural network predicted HCF and lower body joint angles and moments in individuals with hip OA using noisy synthesised key point locations with acceptable errors. Changes in HCF magnitude due to gait modifications were predicted with high accuracy. These findings have important implications for implementation of load-modification based gait retraining interventions for people with hip OA in a natural environment (i.e., home, clinic).

Journal Title

Osteoarthritis and Cartilage

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2024 The Author(s). Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Item Access Status
Note

This publication has been entered in Griffith Research Online as an advance online version.

Access the data
Related item(s)
Subject

Clinical sciences

Sports science and exercise

Persistent link to this record
Citation

Cornish, BM; Pizzolato, C; Saxby, DJ; Xia, Z; Devaprakash, D; Diamond, LE, Hip contact forces can be predicted with a neural network using only synthesised key points and electromyography in people with hip osteoarthritis, Osteoarthritis and Cartilage, 2024

Collections