Revisiting zinc passivation in alkaline solutions

No Thumbnail Available
File version
Author(s)
Thomas, S
Cole, IS
Sridhar, M
Birbilis, N
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2013
Size
File type(s)
Location
License
Abstract

Passive films nominally consist of an inner compact oxide and the outer precipitated layer. In the case of zinc (Zn), the outer layer is mainly precipitated ZnO/Zn(OH)2. Electrolyte pH controls the stability of the outer precipitated layer. In a pH 13 solution, formation of soluble Zn(OH)3− and Zn(OH)42− phases render the precipitated layer unstable increasing zinc corrosion, whereas at pH 12, the precipitated layer (ZnO/Zn(OH)2) is more stable making it an effective anodic barrier upon zinc. These precipitated oxides formed at pH 12 support cathodic reactions on their surface which in turn catalyse further oxide growth by a cathodically driven process. Focused ion beam-scanning electron microscopy (FIB-SEM) was used to support some of the electrochemical assertions, revealing the form and morphology of the passive layers that grow upon zinc exposed to alkaline solutions.

Journal Title

Electrochimica Acta

Conference Title
Book Title
Edition
Volume

97

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Physical sciences

Chemical sciences

Engineering

Materials engineering not elsewhere classified

Persistent link to this record
Citation
Collections