Circular Dichroism Studies on Plasmonic Nanostructures

No Thumbnail Available
File version
Author(s)
Wang, Xiaoli
Tang, Zhiyong
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2017
Size
File type(s)
Location
License
Abstract

In recent years, optical chirality of plasmonic nanostructures has aroused great interest because of innovative fundamental understanding as well as promising potential applications in optics, catalysis and sensing. Herein, state-of-the-art studies on circular dichroism (CD) characteristics of plasmonic nanostructures are summarized. The hybrid of achiral plasmonic nanoparticles (NPs) and chiral molecules is explored to generate a new CD response at the plasmon resonance as well as the enhanced CD intensity of chiral molecules in the UV region, owing to the Coulomb static and dynamic dipole interactions between plasmonic NPs and chiral molecules. As for chiral assembly of plasmonic NPs, plasmon–plasmon interactions between the building blocks are found to induce generation of intense CD response at the plasmon resonance. Three-dimensional periodical arrangement of plasmonic NPs into macroscale chiral metamaterials is further introduced from the perspective of negative refraction and photonic bandgap. A strong CD signal is also discerned in achiral planar plasmonic nanostructures under illumination of circular polarized plane wave at oblique incidence or input vortex beam at normal incidence. Finally perspectives, especially on future investigation of time-resolved CD responses, are presented.

Journal Title

Small

Conference Title
Book Title
Edition
Volume

13

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Nanotechnology not elsewhere classified

Persistent link to this record
Citation
Collections