Building Roof Plane Extraction from LIDAR Data
File version
Accepted Manuscript (AM)
Author(s)
Lu, Guojun
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
DeSouza, P
Engelke, U
Rahman, A
Date
Size
File type(s)
Location
Hobart, AUSTRALIA
License
Abstract
This paper presents a new segmentation technique to use LIDAR point cloud data for automatic extraction of building roof planes. The raw LIDAR points are first classified into two major groups: ground and non-ground points. The ground points are used to generate a 'building mask' in which the black areas represent the ground where there are no laser returns below a certain height. The non-ground points are segmented to extract the planar roof segments. First, the building mask is divided into small grid cells. The cells containing the black pixels are clustered such that each cluster represents an individual building or tree. Second, the non-ground points within a cluster are segmented based on their coplanarity and neighbourhood relations. Third, the planar segments are refined using a rule-based procedure that assigns the common points among the planar segments to the appropriate segments. Finally, another rule-based procedure is applied to remove tree planes which are generally small in size and randomly oriented. Experimental results on three Australian sites have shown that the proposed method offers high building detection and roof plane extraction rates.
Journal Title
Conference Title
2013 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES & APPLICATIONS (DICTA)
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Item Access Status
Note
Access the data
Related item(s)
Subject
Computer vision
Image processing
Photogrammetry and remote sensing