Role of in situ resultant H2O2 in the visible-light-driven photocatalytic inactivation of E. Coli using natural sphalerite: A genetic study
File version
Author(s)
Huang, Guocheng
Xia, Dehua
Ng, Tsz Wai
Yip, Ho Yin
Li, Guiying
An, Taicheng
Zhao, Huijun
Wong, PoKeung
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
This study investigated how a natural sphalerite (NS) photocatalyst, under visible light irradiation, supports photocatalytic bacterial inactivation. This was done by comparing parent E. coli BW25113, and its two isogenic single-gene knock-out mutants, E. coli JW0797-1 (dps– mutant) and JW1721-1 (katE– mutant), where both dps and KatE genes are likely related to H2O2 production. NS could inactivate approximately 5-, 7- and 7-log of E. coli BW25113, JW0797-1, and JW1721-1 within 6 h irradiation, respectively. The two isogenic mutants were more susceptible to photocatalysis than the parental strain because of their lack of a defense system against H2O2 oxidative stress. The ability of in situ resultant H2O2 to serve as a defense against photocatalytic inactivation was also confirmed using scavenging experiments and partition system experiments. Studying catalase activity further revealed that in situ H2O2 played an important role in these inactivation processes. The destruction of bacterial cells from the cell envelope to the intracellular components was also observed using field emission-scanning electron microscopy. Moreover, FT-IR was used to monitor bacterial cell decomposition, key functional group evolution, and bacterial cell structures. This is the first study to investigate the photocatalytic inactivation mechanism of E. coli using single-gene deletion mutants under visible light irradiation.
Journal Title
Journal of Physical Chemistry B
Conference Title
Book Title
Edition
Volume
119
Issue
7
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Physical sciences
Chemical sciences
Other chemical sciences not elsewhere classified
Engineering