A novel computational framework for deducing muscle synergies from experimental joint moments

Loading...
Thumbnail Image
File version
Author(s)
Modenese, Luca
Gopalakrishnan, Ananthamaran
T. M. Phillips, Andrew
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2014
Size

3523974 bytes

File type(s)

application/pdf

Location
License
Abstract

Prior experimental studies have hypothesized the existence of a "muscle synergy" based control scheme for producing limb movements and locomotion in vertebrates. Such synergies have been suggested to consist of fixed muscle grouping schemes with the co-activation of all muscles in a synergy resulting in limb movement. Quantitative representations of these groupings (termed muscle weightings) and their control signals (termed synergy controls) have traditionally been derived by the factorization of experimentally measured EMG. This study presents a novel approach for deducing these weightings and controls from inverse dynamic joint moments that are computed from an alternative set of experimental measurements-movement kinematics and kinetics. This technique was applied to joint moments for healthy human walking at 0.7 and 1.7 m/s, and two sets of "simulated" synergies were computed based on two different criteria (1) synergies were required to minimize errors between experimental and simulated joint moments in a musculoskeletal model (pure-synergy solution) (2) along with minimizing joint moment errors, synergies also minimized muscle activation levels (optimal-synergy solution). On comparing the two solutions, it was observed that the introduction of optimality requirements (optimal-synergy) to a control strategy solely aimed at reproducing the joint moments (pure-synergy) did not necessitate major changes in the muscle grouping within synergies or the temporal profiles of synergy control signals. Synergies from both the simulated solutions exhibited many similarities to EMG derived synergies from a previously published study, thus implying that the analysis of the two different types of experimental data reveals similar, underlying synergy structures.

Journal Title

Frontiers in Computational Neuroscience

Conference Title
Book Title
Edition
Volume

8

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2014 Gopalakrishnan, Modenese and Phillips. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Item Access Status
Note
Access the data
Related item(s)
Subject

Neurosciences not elsewhere classified

Clinical Sciences

Neurosciences

Persistent link to this record
Citation
Collections