KATP channels and myocardial preconditioning: an update.
File version
Author(s)
N. Peart, Jason
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Ischemic or myocardial preconditioning (IPC) is a phenomenon whereby brief periods of ischemia have been shown to protect the myocardium against a more sustained ischemic insult. The result of IPC may be manifest as a marked reduction in infarct size, myocardial stunning, or incidence of cardiac arrhythmias. Whereas many endogenous neurotransmitters, peptides, and hormones have been proposed to play a role in the signal transduction pathways mediating the cardioprotective effect of IPC, nearly universal evidence indicates the involvement of the ATP-sensitive potassium (KATP) channel. Initial evidence suggested that the surface or sarcolemmal KATP (sarcKATP) channel triggered or mediated the cardioprotective effects of IPC; however, more recent findings have suggested a major role for a mitochondrial site or possibly a mitochondrial KATP channel (mitoKATP). This review presents evidence that supports a role for these two channels as a trigger and/or downstream mediator in the phenomenon of IPC or pharmacologically induced PC as well as recent evidence that suggests the involvement of a mitochondrial calcium-activated potassium (mitoKca) channel or the electron transport chain in mediating the beneficial effects of IPC or pharmacologically induced PC.
Journal Title
American Journal of Physiology : Heart and Circulatory Physiology
Conference Title
Book Title
Edition
Volume
285
Issue
Thesis Type
Degree Program
School
Publisher link
DOI
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the author[s] for more information.
Item Access Status
Note
Access the data
Related item(s)
Subject
Physiology
Medical Physiology