Discovery and development of 2-aminobenzimidazoles as potent antimalarials.

No Thumbnail Available
File version
Author(s)
Devine, Shane M
Challis, Matthew P
Kigotho, Jomo K
Siddiqui, Ghizal
De Paoli, Amanda
MacRaild, Christopher A
Avery, Vicky M
Creek, Darren J
Norton, Raymond S
Scammells, Peter J
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2021
Size
File type(s)
Location
License
Abstract

The emergence of Plasmodium falciparum resistance to frontline antimalarials, including artemisinin combination therapies, highlights the need for new molecules that act via novel mechanisms of action. Herein, we report the design, synthesis and antimalarial activity of a series of 2-aminobenzimidazoles, featuring a phenol moiety that is crucial to the pharmacophore. Two potent molecules exhibited IC50 values against P. falciparum 3D7 strain of 42 ± 4 (3c) and 43 ± 2 nM (3g), and high potency against strains resistant to chloroquine (Dd2), artemisinin (Cam3.IIC580Y) and PfATP4 inhibitors (SJ557733), while demonstrating no cytotoxicity against human cells (HEK293, IC50 > 50 μM). The most potent molecule, possessing a 4,5-dimethyl substituted phenol (3r) displayed an IC50 value of 6.4 ± 0.5 nM against P. falciparum 3D7, representing a 12-fold increase in activity from the parent molecule. The 2-aminobenzimidazoles containing a N1-substituted phenol represent a new class of molecules that have high potency in vitro against P. falciparum malaria and low cytotoxicity. They possessed attractive pharmaceutical properties, including low molecular weight, high ligand efficiency, high solubility, synthetic tractability and low in vitro clearance in human liver microsomes.

Journal Title

European Journal of Medicinal Chemistry

Conference Title
Book Title
Edition
Volume

221

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Medicinal and biomolecular chemistry

Organic chemistry

Pharmacology and pharmaceutical sciences

2-Aminobenzimidazole

Malaria

Plasmodium falciparum

Structure-activity relationships

Persistent link to this record
Citation

Devine, SM; Challis, MP; Kigotho, JK; Siddiqui, G; De Paoli, A; MacRaild, CA; Avery, VM; Creek, DJ; Norton, RS; Scammells, PJ, Discovery and development of 2-aminobenzimidazoles as potent antimalarials, European Journal of Medicinal Chemistry, 2021, 221, pp. 113518

Collections