Evaluating the enantiospecific differences of non-steroidal anti-inflammatory drugs (NSAIDs) using an ecotoxicity bioassay test battery
File version
Accepted Manuscript (AM)
Author(s)
Branch, Amos
Khan, Stuart J
Leusch, Frederic DL
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Wastewater treatment plants are a major pathway for pharmaceuticals to the aquatic environment. Many pharmaceuticals, including non-steroidal anti-inflammatory drugs (NSAIDs), are chiral chemicals and the biological activity of their enantiomers can differ. Few studies have assessed the effects of different NSAID enantiomers on non-target organisms. However, this information is important for environmental risk assessment to ensure that the effects of more potent enantiomers are not overlooked. In the current study, enantiomers of naproxen, ibuprofen, ketoprofen and flurbiprofen were evaluated in bioassays with bacteria, algae and fish cells. All enantiomers induced bacterial toxicity, with (R)-naproxen more toxic than (S)-naproxen (EC50 0.75 vs 0.93 mg/L) and (S)-flurbiprofen more toxic than (R)-flurbiprofen (EC50 1.22 vs 2.13 mg/L). Both (R)-flurbiprofen and (S)-flurbiprofen induced photosystem II inhibition in green algae, with (R)-flurbiprofen having a greater effect in the assay after 24 h (EC10 5.47 vs 9.07 mg/L). Only the (R)-enantiomers of flurbiprofen and ketoprofen induced ethoxyresorufin-O-deethylase (EROD) activity in fish cells, while (S)-naproxen was 2.5 times more active than (R)-naproxen in the EROD assay. While enantiospecific differences were observed for all assays, the difference was less than an order of magnitude. This indicates that the risk of overlooking the effect of more potent NSAID enantiomers is minor for the studied test systems and supports the use of racemic (or single enantiomer) effect data for environmental risk assessment. However, further investigation of the (R)-enantiomer of commonly used NSAID ketoprofen is recommended as it was at least six times more potent in the EROD assay than the inactive (S)-ketoprofen.
Journal Title
Science of The Total Environment
Conference Title
Book Title
Edition
Volume
694
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Environmental sciences
Persistent link to this record
Citation
Neale, PA; Branch, A; Khan, SJ; Leusch, FDL, Evaluating the enantiospecific differences of non-steroidal anti-inflammatory drugs (NSAIDs) using an ecotoxicity bioassay test battery, Science of The Total Environment, 2019, 694, pp. 133659:1-133659:7