Pluchea lanceolata protects hippocampal neurons from endothelin-1 induced ischemic injury to ameliorate cognitive deficits
File version
Author(s)
Sivanesan, Senthilkumar
Popa-Wagner, Aurel
Udaykumar, Padmaja
Kirubagaran, Ramalingam
Guruprasad, KP
Vidyadhara, DJ
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Ischemic brain injury is one of the leading causes of death and disability, where lack of disease modifying treatment strategies make us rely on symptomatic relief. Treatment principles from traditional systems of medicine may fill this gap and its validation in modern medicine perspective is important to bring them to mainstream. Here, we evaluated the neuroprotective efficacy of Ayurvedic medicinal herb Pluchea lanceolata in treating ischemic hippocampal injury. Focal hippocampal ischemia was modeled in Wistar rats through stereotaxic intrahippocampal injection of endothelin-1 (ET-1). Post-surgery, hydroalcoholic extract of the rhizome of Pluchea lanceolata (HAPL) was administered orally, once in a day for 14 consecutive days to ischemic rats. There were two treatment groups based on the HAPL dosage; HAPL200 (200 mg/kg body weight) and HAPL400 (400 mg/kg body weight). Comparisons were made with the ET-1 ischemic rats which received only the vehicle, and the normal surgical control. Ischemic hippocampal injury led to severe cognitive deficits as evaluated by Morris water maze and open field test, along with locomotory dysfunction noted in actophotometer test. HAPL treatment significantly attenuated these behavioural deficits in a dose dependent manner. Loss of pyramidal cells and degenerative phenotype of shrunken hyperdensed soma with pyknotic nuclei in CA1 and CA3 hippocampal neurons in ischemia were reversed after HAPL treatment. We provide first evidence for loss of dendritic architecture in ET-1 induced focal ischemic hippocampal injury using Golgi impregnation, where HAPL could salvage the dendritic branching and intersections. Intriguingly, it enhanced the dentritic arborization beyond what is noted in normal rats. Ability of HAPL to reverse oxidative stress, especially through maintaining glutathione peroxidase levels and lipid peroxidation in ischemic condition evidences that it may exert neuroprotection through its antioxidant properties. Thus, Pluchea lanceolata and its constituents provide potential alternative/adjuvant treatment strategy for ischemic hippocampal stroke.
Journal Title
JOURNAL OF CHEMICAL NEUROANATOMY
Conference Title
Book Title
Edition
Volume
94
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Neurosciences