Fast and robust framework for view-invariant gait recognition
File version
Author(s)
Li, CT
Sanchez, V
Liew, AWC
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Coventry, United Kingdom
License
Abstract
View-invariant gait recognition is one of the major challenges in identifying people through their gait. Many researchers have evaluated view angle transformation techniques, discriminant analysis and manifold learning approaches for cross-view recognition, and their proposals are usually based on a common factor, i.e., to establish a cross-view mapping between gallery and probe templates. However, their effectiveness is restricted to small view angle variances. A promising approach to perform view-invariant gait recognition is through multi-view feature learning. In this paper, we propose the view-invariant feature selector (ViFS) and integrate it in a framework for view-invariant gait recognition. ViFS select features from multi-view gait templates and reconstructs gallery templates that accurately match the data for a specific view angle. ViFS is thus able to reconstruct gallery templates from arbitrary view angles, and thus help to transfer the cross-view problem to identical-view gait recognition. We also apply linear subspace learning methods as feature enhancers for ViFS, which substantially reduce the computational cost and improve the recognition speed. We test the proposed framework on the CASIA Dataset B. The average recognition accuracy of the proposed framework for 11 different views exceed 98%.
Journal Title
Conference Title
Proceedings - 2017 5th International Workshop on Biometrics and Forensics, IWBF 2017
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Artificial intelligence not elsewhere classified