Microfluidic chip enables single-cell measurement for multidrug resistance in triple-negative breast cancer cells

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Parekh, K
Noghabi, HS
Lopez, JA
Li, PCH
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2020
Size
File type(s)
Location
Abstract

Aims: Triple-negative breast cancer patients are commonly treated with combination chemotherapy. Nonetheless, outcomes remain substandard with relapses being of a frequent occurrence. Among the several mechanisms that result in treatment failure, multidrug resistance, which is mediated by ATP-binding cassette proteins, is the most common. Regardless of the substantial studies conducted on the heterogeneity of cancer types, only a few assays can distinguish the variability in multidrug resistance activity between individual cells. We aim to develop a single-cell assay to study this. Methods: This experiment utilized a microfluidic chip to measure the drug accumulation in single breast cancer cells in order to understand the inhibition of drug efflux properties. Results: Selection of single cells, loading of drugs, and fluorescence measurement for intracellular drug accumulation were all conducted on a microfluidic chip. As a result, measurements of the accumulation of chemotherapeutic drugs (e.g., daunorubicin and paclitaxel) in single cells in the presence and absence of cyclosporine A were conducted. Parameters such as initial drug accumulation, signal saturation time, and fold-increase of drug with and without the presence cyclosporine A were also tested. Conclusion: The results display that drug accumulation in a single-cell greatly enhanced over its same-cell control because of inhibition by cyclosporine A. Furthermore, this experiment may provide a platform for future liquid biopsy studies to characterize the multidrug resistance activity at a single-cell level.

Journal Title

Cancer Drug Resistance

Conference Title
Book Title
Edition
Volume

3

Issue

3

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Item Access Status
Note
Access the data
Related item(s)
Subject

Biomedical engineering

Oncology and carcinogenesis

Persistent link to this record
Citation

Parekh, K; Noghabi, HS; Lopez, JA; Li, PCH, Microfluidic chip enables single-cell measurement for multidrug resistance in triple-negative breast cancer cells, Cancer Drug Resistance, 2020, 3 (3), pp. 613-622

Collections