Mixing Linear SVMs for Nonlinear Classification

Loading...
Thumbnail Image
File version
Author(s)
Fu, Zhouyu
Robles-Kelly, Antonio
Zhou, Jun
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2010
Size

716827 bytes

File type(s)

application/pdf

Location
License
Abstract

In this paper, we address the problem of combining linear support vector machines (SVMs) for classification of large-scale nonlinear datasets. The motivation is to exploit both the efficiency of linear SVMs (LSVMs) in learning and prediction and the power of nonlinear SVMs in classification. To this end, we develop a LSVM mixture model that exploits a divide-and-conquer strategy by partitioning the feature space into subregions of linearly separable datapoints and learning a LSVM for each of these regions. We do this implicitly by deriving a generative model over the joint data and label distributions. Consequently, we can impose priors on the mixing coefficients and do implicit model selection in a top-down manner during the parameter estimation process. This guarantees the sparsity of the learned model. Experimental results show that the proposed method can achieve the efficiency of LSVMs in the prediction phase while still providing a classification performance comparable to nonlinear SVMs.

Journal Title

IEEE Transactions on Neural Networks

Conference Title
Book Title
Edition
Volume

21

Issue

12

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Item Access Status
Note
Access the data
Related item(s)
Subject

Computer vision

Persistent link to this record
Citation
Collections