해파리 분말의 상토 첨가물로서의 효과 및상토의 미생물 군집 변화에 대한 연구
File version
Author(s)
Choi, Jaeho
Kim, Young-Rok
Cha, Ha-Eun
Do, Hyung Ki
Hwang, Cher Won
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Recently, the population of toxic and/or unusable jellyfish is increasing during summer along the east coast of Korea, causing massive economical and ecological damage to fisheries, nuclear power plant and marine environment. To solve this problem, this study was carried out using jellyfish as a potential soil additive for horticulture. The jellyfish was solidified and homogenized, then mixed with a commercial bed soil. Allium tuberosum ROTH was planted to control bed soil (BS) and jellyfish powder mixed bed soil groups (Mixed bed soil, MBS), and following parameters were measured during five weeks: water content, electrical conductivity and growth of leaves. At the end of the experiment, bacterial community structures of each pot were analyzed by DGGE. The relative water adsorption of jellyfish powder was about 2.5 times greater compared to its dry weight. The water content of MBS group was significantly higher than BS group 6.5 to 14.2%, and the electric conductivity of MBS group was measured around 2.8 dS/m where BS group was resulted average of 1.8 dS/m. However, the leaves of BS group were grown 30% longer compared to MBS group. DGGE analysis of MBS group was shown in high number of phylum Bacteroidetes and increased diversity of Sphingobacteriia compared to BS group. Jellyfish powder as a soil additive surely will be a good candidate as humectant and microbiota stimulator, although there are several obstacles such as high electrical conductivity and residual alum salt which used for solidification of jellyfish.
Journal Title
Han'guk Toyang Biryo Hakhoe Chi
Conference Title
Book Title
Edition
Volume
45
Issue
2
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Microbiology not elsewhere classified