Quantum Henry gas solubility optimization algorithm for global optimization

No Thumbnail Available
File version
Author(s)
Mohammadi, D
Abd Elaziz, M
Moghdani, R
Demir, E
Mirjalili, S
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2021
Size
File type(s)
Location
License
Abstract

This paper proposes an improvement on the recently introduced Henry Gas Solubility Optimization (HGSO) metaheuristic algorithm that simulates Henry’s gas law (i.e., the concentration of a gas sample in a liquid solvent is proportional to the concentration of the sample in the gas phase). As an improvement, we apply quantum theory instead of the standard procedure used in the HSGO algorithm for updating solutions. The proposed algorithm is named as Quantum HGSO (QHGSO) algorithm in this paper. The suggested changes enhance the ability of HGSO to create a counterbalance between exploitation and exploration for a better investigation of the solution space. For evaluating the capability of finding the optimal solution of our proposed algorithm, a collection of forty-seven global optimization functions is solved. Moreover, three well-known engineering problems are studied to show the performance of the QHGSO algorithm in constrained optimization problems. Comparative results with other well-known metaheuristic algorithms have shown that the QHGSO algorithm outperforms others with higher computational performance.

Journal Title

Engineering with Computers

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note

This publication has been entered in Griffith Research Online as an advanced online version.

Access the data
Related item(s)
Subject

Artificial intelligence

Applied mathematics

Engineering

Information and computing sciences

Persistent link to this record
Citation

Mohammadi, D; Abd Elaziz, M; Moghdani, R; Demir, E; Mirjalili, S, Quantum Henry gas solubility optimization algorithm for global optimization, Engineering with Computers, 2021

Collections