LiDAR-Guided Cross-Attention Fusion for Hyperspectral Band Selection and Image Classification
File version
Accepted Manuscript (AM)
Author(s)
Zhou, J
Wang, J
Tian, H
Liew, AWC
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The fusion of hyperspectral and LiDAR data has been an active research topic. Existing fusion methods have ignored the high-dimensionality and redundancy challenges in hyperspectral images, despite that band selection methods have been intensively studied for hyperspectral image (HSI) processing. This paper addresses this significant gap by introducing a cross-attention mechanism from the transformer architecture for the selection of HSI bands guided by LiDAR data. LiDAR provides high-resolution vertical structural information, which can be useful in distinguishing different types of land cover that may have similar spectral signatures but different structural profiles. In our approach, the LiDAR data are used as the “query” to search and identify the “key” from the HSI to choose the most pertinent bands for LiDAR. This method ensures that the selected HSI bands drastically reduce redundancy and computational requirements while working optimally with the LiDAR data. Extensive experiments have been undertaken on three paired HSI and LiDAR data sets: Houston 2013, Trento and MUUFL. The results highlight the superiority of the cross-attention mechanism, underlining the enhanced classification accuracy of the identified HSI bands when fused with the LiDAR features. The results also show that the use of fewer bands combined with LiDAR surpasses the performance of state-of-the-art fusion models.
Journal Title
IEEE Transactions on Geoscience and Remote Sensing
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
This work is covered by copyright. You must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a specified licence, refer to the licence for details of permitted re-use. If you believe that this work infringes copyright please make a copyright takedown request using the form at https://www.griffith.edu.au/copyright-matters.
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advance online version.
Access the data
Related item(s)
Subject
Computational imaging
Earth sciences
Engineering
Persistent link to this record
Citation
Yang, JX; Zhou, J; Wang, J; Tian, H; Liew, AWC, LiDAR-Guided Cross-Attention Fusion for Hyperspectral Band Selection and Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 2024