Training radial basis function networks using biogeography-based optimizer

No Thumbnail Available
File version
Author(s)
Aljarah, Ibrahim
Faris, Hossam
Mirjalili, Seyedali
Al-Madi, Nailah
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
License
Abstract

Training artificial neural networks is considered as one of the most challenging machine learning problems. This is mainly due to the presence of a large number of solutions and changes in the search space for different datasets. Conventional training techniques mostly suffer from local optima stagnation and degraded convergence, which make them impractical for datasets with many features. The literature shows that stochastic population-based optimization techniques suit this problem better and are reliably alternative because of high local optima avoidance and flexibility. For the first time, this work proposes a new learning mechanism for radial basis function networks based on biogeography-based optimizer as one of the most well-regarded optimizers in the literature. To prove the efficacy of the proposed methodology, it is employed to solve 12 well-known datasets and compared to 11 current training algorithms including gradient-based and stochastic approaches. The paper considers changing the number of neurons and investigating the performance of algorithms on radial basis function networks with different number of parameters as well. A statistical test is also conducted to judge about the significance of the results. The results show that the biogeography-based optimizer trainer is able to substantially outperform the current training algorithms on all datasets in terms of classification accuracy, speed of convergence, and entrapment in local optima. In addition, the comparison of trainers on radial basis function networks with different neurons size reveal that the biogeography-based optimizer trainer is able to train radial basis function networks with different number of structural parameters effectively.

Journal Title

Neural Computing and Applications

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note

This publication has been entered into Griffith Research Online as an Advanced Online Version.

Access the data
Related item(s)
Subject

Artificial intelligence

Cognitive and computational psychology

Computer vision and multimedia computation

Machine learning

Persistent link to this record
Citation
Collections