Organic field effect transistors (OFETs) in environmental sensing and health monitoring: A review

No Thumbnail Available
File version
Author(s)
Surya, Sandeep G
Raval, Harshil N
Ahmad, Rafiq
Sonar, Prashant
Salama, Khaled N
Rao, V Ramgopal
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
License
Abstract

Organic field effect transistors (OFETs) have been the focus of sensing application research during the last two decades. In comparison to their inorganic counterparts, OFETs have multiple advantages such as low-cost manufacturing, large area coverage, flexibility, and readily tunable electronic material properties. To date, various organic semiconductors (OSCs), both polymers and small molecules, have been extensively researched for developing active channel layers in OFETs, thus enhancing their sensitivity and selectivity. However, OFET devices still need to be optimized to demonstrate reliable performance at the device level and in sensing applications. This review begins with an introduction of the OFETs with an emphasis on their geometry, materials (OSCs), fabrication process, and data analysis. After this, multiple applications are discussed, and the progress regarding sensing elements and precisions is highlighted. Finally, the challenges and possible future directions of OFET arrays in embedded sensing platforms are presented.

Journal Title

TRENDS IN ANALYTICAL CHEMISTRY

Conference Title
Book Title
Edition
Volume

111

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Analytical chemistry

Other chemical sciences

Persistent link to this record
Citation
Collections