Ligand effects on electronic and optoelectronic properties of two-dimensional PbS necking percolative superlattices

No Thumbnail Available
File version
Author(s)
Zhao, Man
Ding, Defang
Yang, Fangxu
Wang, Dawei
Lv, Jiawei
Hu, Wenping
Lu, Chenguang
Tang, Zhiyong
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2017
Size
File type(s)
Location
License
Abstract

The inter-nanocrystal (NC) distance, necking degree, ordering level, and NC surface ligands all affect the electronic and optoelectronic properties of NC solids. Herein, we introduce a unique PbS structure of necking percolative superlattices to exclude the morphological factors and study the effect of ligands on the NC properties. X-ray photoelectron spectroscopy data indicate that 1,2-ethanedithiol (EDT), oxalic acid, mercaptopropionic acid, and NH4SCN (SCN) ligands were attached to the surface of NCs by substrate-supported ligand exchange. Field-effect transistors were tested and photodetector measurements were performed to compare these NC solids. An SCN-treated film had the highest mobility and responsivity under high-power intensity irradiation owing to its high carrier density, whereas an EDT-treated film had the lowest mobility, photocurrent, and dark current. These findings introduce new avenues for choosing suitable ligands for NC applications.

Journal Title

Nano Research

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note

This publication has been entered into Griffith Research Online as an Advanced Online Version.

Access the data
Related item(s)
Subject

Nanotechnology not elsewhere classified

Persistent link to this record
Citation
Collections