Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production

No Thumbnail Available
File version
Author(s)
Wei, Wei
Zhou, Xu
Wang, Dongbo
Sun, Jing
Wang, Qilin
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2017
Size
File type(s)
Location
License
Abstract

Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH3) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH3-N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH3-N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B0) and hydrolysis rate (k) was achieved at FA concentrations of 420–680 mg NH3-N/L, and was determined as approximately 22% (from 160 to 195 L CH4/kg VS added) and 140% (from 0.22 to 0.53 d−1) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from ‘linear economy’ to ‘circular economy’.

Journal Title

Water Research

Conference Title
Book Title
Edition
Volume

118

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Environmentally sustainable engineering

Global and planetary environmental engineering

Persistent link to this record
Citation
Collections