Supplier selection using chance-constrained data envelopment analysis with non-discretionary factors and stochastic data

Loading...
Thumbnail Image
File version
Author(s)
Azadi, Majid
Farzipoor Saen, Reza
Tavana, Madjid
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2012
Size

814105 bytes

File type(s)

application/pdf

Location
License
Abstract

The changing economic conditions have challenged many organisations to search for more efficient and effective ways to manage their supply chain. During recent years supplier selection decisions have received considerable attention in the supply chain management literature. There are four major decisions that are related to the supplier selection process: what product or services to order, from which suppliers, in what quantities and in which time periods? Data envelopment analysis (DEA) has been successfully used to select the most efficient supplier(s) in a supply chain. In this study, we introduce a novel supplier selection model using chance-constrained DEA with non-discretionary factors and stochastic data. We propose a deterministic equivalent of the stochastic non-discretionary model and convert this deterministic problem into a quadratic programming problem. This quadratic programming problem is then solved using algorithms available for this class of problems. We perform sensitivity analysis on the proposed non-discretionary model and present a case study to demonstrate the applicability of the proposed approach and to exhibit the efficacy of the procedures and algorithms.

Journal Title

International Journal of Industrial and Systems Engineering

Conference Title
Book Title
Edition
Volume

10

Issue

2

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2012 Inderscience Publishers. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Commerce, Management, Tourism and Services not elsewhere classified

Mechanical Engineering

Persistent link to this record
Citation
Collections