Crystal structure of human catecholamine sulfotransferase

No Thumbnail Available
File version
Author(s)
Bidwell, LM
McManus, ME
Gaedigk, A
Kakuta, Y
Negishi, M
Pedersen, L
Martin, JL
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
1999
Size
File type(s)
Location
License
Abstract

Sulfonation, like phosphorylation, can modify the activity of a variety of biological molecules. The sulfotransferase enzymes sulfonate neurotransmitters, drugs, steroid hormones, dietary carcinogens and proteins. SULT1A3 specifically sulfonates catecholamines such as dopamine, adrenaline and noradrenaline. The crystal structure of SULT1A3 with a sulfate bound at the active site, has been determined at 2.4 Å resolution. Although the core α/β fold is like that of estrogen and heparan sulfotransferases, major differences occur in and around the active site. Most notably, several regions surrounding the active site, including a section of 40 residues, are disordered in SULT1A3. Regions that are topologically equivalent to the disordered parts of SULT1A3 are involved in substrate and cofactor binding in estrogen and heparan sulfotransferase. Flexibility in these regions suggests that ligand binding elicits a disorder-order transition in and around the active site of sulfotransferases and might contribute to the broad substrate specificity of these enzymes.

Journal Title

Journal of Molecular Biology

Conference Title
Book Title
Edition
Volume

293

Issue

3

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Medicinal and biomolecular chemistry

Biochemistry and cell biology

Biochemistry and cell biology not elsewhere classified

Microbiology

Persistent link to this record
Citation
Collections