Fusion of Hyperspectral and LiDAR Data Using Discriminant Correlation Analysis for Land Cover Classification

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
Jahan, Farah
Zhou, Jun
Awrangjeb, Mohammad
Gao, Yongsheng
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
License
Abstract

It is evident that using complementary features from different sensors is effective for land cover classification. Therefore, combining complementary information from hyperspectral (HS) and light detection and ranging (LiDAR) data can greatly assist in such applications. In this paper, we propose a model for land cover classification, which extracts effective features representing different characteristics (e.g., spectral, geometrical/structural) of objects of interest from these two complementary data sources (e.g., HS and LiDAR) and fuse them effectively by incorporating dimensionality reduction technique. The HS bands are first grouped based on their joint entropy and structural similarity for group-wise spatial feature extraction. The spectral and spatial features from HS are then fused in parallel via discriminant correlation analysis (DCA) method for each band group. This is followed by a multisource fusion step between the spatial features extracted from HS and LiDAR data using DCA. The resultant features from both band-group fusion and multisource fusion steps are concatenated with several other features extracted from HS and LiDAR data. In the proposed model, DCA fusion produces discriminative features by eliminating between-class correlations and confining within-class correlations. We compare the performance of our feature extraction and fusion scheme using random forest and support vector machine classifiers. We also compare our approach with several state-of-the-art approaches on two benchmark land cover datasets and show that our approach outperforms the alternatives by a large margin.

Journal Title

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Conference Title
Book Title
Edition
Volume

11

Issue

10

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Item Access Status
Note
Access the data
Related item(s)
Subject

Artificial intelligence

Physical geography and environmental geoscience

Geomatic engineering

Photogrammetry and remote sensing

Applied computing

Persistent link to this record
Citation
Collections