Carbon isotope discrimination in leaves of the broad-leaved paperbark tree, Melaleuca quinquenervia, as a tool for quantifying past tropical and subtropical rainfall

Loading...
Thumbnail Image
File version
Accepted Manuscript (AM)
Author(s)
Tibby, John
Barr, Cameron
McInerney, Francesca A
Henderson, Andrew CG
Leng, Melanie J
Greenway, Margaret
Marshall, Jonathan C
McGregor, Glenn B
Tyler, Jonathan J
McNeil, Vivienne
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
License
Abstract

Quantitative reconstructions of terrestrial climate are highly sought after but rare, particularly in Australia. Carbon isotope discrimination in plant leaves (Δleaf) is an established indicator of past hydroclimate because the fractionation of carbon isotopes during photosynthesis is strongly influenced by water stress. Leaves of the evergreen tree Melaleuca quinquenervia have been recovered from the sediments of some perched lakes on North Stradbroke and Fraser Islands, south‐east Queensland, eastern Australia. Here, we examine the potential for using M. quinquenervia ∆leaf as a tracer of past rainfall by analysing carbon isotope ratios (δ13C) of modern leaves. We firstly assess Δleaf variation at the leaf and stand scale and find no systematic pattern within leaves or between leaves due to their position on the tree. We then examine the relationships between climate and Δleaf for a 11‐year time series of leaves collected in a litter tray. M. quinquenervia retains its leaves for 1–4 years; thus, cumulative average climate data are used. There is a significant relationship between annual mean ∆leaf and mean annual rainfall of the hydrological year for 1–4 years (i.e. 365–1460 days) prior to leaf fall (r2 = 0.64, P = 0.003, n = 11). This relationship is marginally improved by accounting for the effect of pCO2 on discrimination (r2 = 0.67, P = 0.002, n = 11). The correlation between rainfall and Δleaf, and the natural distribution of Melaleuca quinquenervia around wetlands of eastern Australia, Papua New Guinea and New Caledonia offers significant potential to infer past rainfall on a wide range of spatial and temporal scales.

Journal Title
Global Change Biology
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
© 2016 John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Carbon isotope discrimination in leaves of the broad-leaved paperbark tree, Melaleuca quinquenervia, as a tool for quantifying past tropical and subtropical rainfall, Global Change Biology, Volume 22, Issue 10, October 2016, Pages 3474-3486, which has been published in final form at 10.1111/gcb.13277. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Environmental sciences
Other environmental sciences not elsewhere classified
Biological sciences
Persistent link to this record
Citation
Collections