A dysbiotic mycobiome dominated by Candida albicans is identified within oral squamous-cell carcinomas

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Perera, Manosha
Al-Hebshi, Nezar Noor
Perera, Irosha
Ipe, Deepak
Ulett, Glen C
Speicher, David J
Chen, Tsute
Johnson, Newell W
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2017
Size
File type(s)
Location
Abstract

The aim of this study was to characterize the mycobiome associated with oral squamous-cell carcinoma (OSCC). DNA was extracted from 52 tissue biopsies (cases: 25 OSCC; controls: 27 intra-oral fibro-epithelial polyps [FEP]) and sequenced for the fungal internal transcribed spacer 2 region using Illumina™ 2 x300bp chemistry. Merged reads were classified to species level using a BLASTN-algorithm with UNITE’s named species sequences as reference. Downstream analyses were performed using QIIME™ and linear discriminant analysis effect size. A total of 364 species representing 160 genera and two phyla (Ascomycota and Basidiomycota) were identified, with Candida and Malassezia making up 48% and 11% of the average mycobiome, respectively. However, only five species and four genera were detected in ≥50% of the samples. The species richness and diversity were significantly lower in OSCC. Genera Candida, Hannaella, and Gibberella were overrepresented in OSCC; Alternaria and Trametes were more abundant in FEP. Species-wise, Candida albicans, Candida etchellsii, and a Hannaella luteola–like species were enriched in OSCC, while a Hanseniaspora uvarum–like species, Malassezia restricta, and Aspergillus tamarii were the most significantly abundant in FEP. In conclusion, a dysbiotic mycobiome dominated by C. albicans was found in association with OSCC, a finding worth further investigation.

Journal Title

Journal of Oral Microbiology

Conference Title
Book Title
Edition
Volume

9

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Medical microbiology

Medical microbiology not elsewhere classified

Microbiology

Persistent link to this record
Citation
Collections