Development of a maximum likelihood regression tree-based model for predicting subway incident delay
File version
Author(s)
Zheng, Yang
Qu, Xiaobo
Yan, Xuedong
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
This study aims to develop a maximum likelihood regression tree-based model to predict subway incident delays, which are major negative impacts caused by subway incidents from the commuter’s perspective. Using the Hong Kong subway incident data from 2005 and 2009, a tree comprising 10 terminal nodes is selected to predict subway incident delays in a case study. An accelerated failure time (AFT) analysis is conducted separately for each terminal node. The goodness-of-fit results show that our developed model outperforms the traditional AFT models with fixed and random effects because it can overcome the heterogeneity problem and over-fitting effects. The developed model is beneficial for subway engineers looking to propose effective strategies for reducing subway incident delays, especially in super-large-sized cities with huge public travel demand.
Journal Title
Transportation Research Part C
Conference Title
Book Title
Edition
Volume
57
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Information and computing sciences
Other information and computing sciences not elsewhere classified
Engineering
Other engineering not elsewhere classified
Commerce, management, tourism and services