Ground hardness and injury in community level Australian football

No Thumbnail Available
File version
Author(s)
Twomey, Dara M
Finch, Caroline F
Lloyd, David G
Elliott, Bruce C
Doyle, Tim LA
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2012
Size
File type(s)
Location
License
Abstract

Objectives: To describe the risk and details of injuries associated with ground hardness in community level Australian football (AF). Design: Prospective injury surveillance with periodic objective ground hardness measurement. Methods: 112 ground hardness assessments were undertaken using a Clegg hammer at nine locations across 20 grounds, over the 2007 and 2008 AF seasons. Details of 352 injuries sustained by community level players on those grounds were prospectively collected as part of a large randomised controlled trial. The ground location of the injury was matched to the nearest corresponding ground hardness Clegg hammer readings, in gravities (g), which were classified from unacceptably low (<30 g) to unacceptably high hardness (>120 g). Results: Clegg hammer readings ranged from 25 to 301 g. Clegg hammer hardness categories from low/normal to high/normal were associated with the majority of injuries, with only 3.7% (13 injuries) on unacceptably high hardness and 0.3% (1 injury) on the unacceptably low hardness locations. Relative to the preferred range of hardness, the risk of sustaining an injury on low/normal hardness locations was 1.31 (95%CI: 1.06-1.62) times higher and 1.82 (95%CI: 1.17-2.85) times higher on locations with unacceptably high hardness. The more severe injuries occurred with low/normal ground hardness. Conclusions: Despite the low number of injuries, the risk of sustaining an injury on low/normal and unacceptably hard grounds was significantly greater than on the preferred range of hardness. Notably, the severity of the injuries sustained on unacceptably hard grounds was lower than for other categories of hardness.

Journal Title

Journal of Science and Medicine in Sport

Conference Title
Book Title
Edition
Volume

15

Issue

4

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Sports science and exercise

Biomechanics

Medical physiology

Persistent link to this record
Citation
Collections