Bipolar corona discharge based air flow generation with low net charge
File version
Author(s)
Thien, Xuan Dinh
Terebessy, Tibor
Tung, Thanh Bui
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
In this paper, we report on a miniaturized device that can generate ion wind flow with very low net charge. Both positive and negative ions are simultaneously generated from two sharp electrodes placed in parallel, connected to a single battery-operated power source. The two-electrode arrangement is symmetrical, where the electrode creating charged ions of one polarity also serves as the reference electrode to establish the electric field required for ion creation by the opposite electrode, and vice versa. The numerical simulation is carried out with programmable open source OpenFOAM, where the measured current-voltage is applied as boundary condition to simulate the electrohydrodynamics flow. The air flow inside the device is verified by eight hotwires embedded alongside the downstream channel. It was confirmed that the jet flow generated in the channel has a linear relationship with the square root of the discharge current and its measured values agree well with simulation. The device is robust, ready-to-use and minimal in cost. These are important features that can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling and analysis. The proposed configuration is beneficial with space constraints and/or where neutralized discharge process is required, such as inertial fluidic units, circulatory flow heat transfer, electrospun polymer nanofiber to overcome the intrinsic instability of the process, or the formation of low charged aerosol for inhalation and deposition of charge particles.
Journal Title
Sensors and Actuators A: Physical
Conference Title
Book Title
Edition
Volume
244
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Materials engineering
Mechanical engineering
Electrical engineering
Electronics, sensors and digital hardware
Science & Technology
Technology
Engineering, Electrical & Electronic
Instruments & Instrumentation
Engineering
Persistent link to this record
Citation
Van, TD; Thien, XD; Terebessy, T; Tung, TB, Bipolar corona discharge based air flow generation with low net charge, Sensors and Actuators A: Physical, 2016, 244, pp. 146-155