Evolutionary population dynamics and grey wolf optimizer

No Thumbnail Available
File version
Author(s)
Saremi, Shahrzad
Mirjalili, Seyedeh Zahra
Mirjalili, Seyed Mohammad
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2015
Size
File type(s)
Location
License
Abstract

Evolutionary population dynamics (EPD) deal with the removal of poor individuals in nature. It has been proven that this operator is able to improve the median fitness of the whole population, a very effective and cheap method for improving the performance of meta-heuristics. This paper proposes the use of EPD in the grey wolf optimizer (GWO). In fact, EPD removes the poor search agents of GWO and repositions them around alpha, beta, or delta wolves to enhance exploitation. The GWO is also required to randomly reinitialize its worst search agents around the search space by EPD to promote exploration. The proposed GWO–EPD algorithm is benchmarked on six unimodal and seven multi-modal test functions. The results are compared to the original GWO algorithm for verification. It is demonstrated that the proposed operator is able to significantly improve the performance of the GWO algorithm in terms of exploration, local optima avoidance, exploitation, local search, and convergence rate.

Journal Title

Neural Computing and Applications

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note

This publication has been entered into Griffith Research Online as an Advanced Online Version.

Access the data
Related item(s)
Subject

Cognitive and computational psychology

Cognition

Persistent link to this record
Citation
Collections