Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China

No Thumbnail Available
File version
Author(s)
Ning, Qiushi
Gu, Qian
Shen, Jupei
Lv, Xiaotao
Yang, Junjie
Zhang, Ximei
He, Jizheng
Huang, Jianhui
Wang, Hong
Xu, Zhihong
Han, Xingguo
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2015
Size
File type(s)
Location
License
Abstract

Purpose Microbial processes driving nitrogen (N) cycling are hot topics in terms of increasing N deposition. Abundances of N-related functional genes (NFG) can be most responsive to N deposition and commonly used to represent N transformation rates. However, empirically simulated N deposition has been exclusively conducted through large and infrequent N fertilization, which may have caused contrasting effects on NFGs. Therefore, experiments with small and frequent N additions closed to natural deposition are necessary. Materials and methods Independently manipulated N addition rates (i.e., 0, 5, 10, 15, 20, and 50 g N m-2 year-1) and two frequencies (2 times per year addition as conventional large and infrequent N fertilization (2 N), and 12 times per year addition simulating small and frequent N deposition (12 N), respectively) were conducted in a long-term field experiment of a semiarid grassland in northern China. Quantification analysis using real-time PCR were carried out for NFGs, including nifH for N fixation, chiA for N mineralization, archaeal (AOA) and bacterial (AOB) amoA for nitrification, and narG, nirS, nirK, and nosZ for denitrification. Results and discussion NFG abundances showed distinct sensitivities to N addition rates. The nifH, AOA-amoA, nirS, and nosZ gene abundances increased due to improved available N at low N rates, but suppressed by salt toxicity and acidification at high N rates. Large changes of chiA and AOB-amoA gene abundances highlighted their great sensitivities to the N enrichment. The abundance of AOB-amoA was more sensitive to N addition than AOA-amoA, but AOA-amoA dominated in absolute numbers and they predominated the ammonia-oxidation under different conditions. The N addition frequencies caused significant lower gene abundances of nifH, nirS, and nosZ under the 2-N frequency due to stronger suppression of acidification and salt toxicity and resulted in significant higher AOB-amoA gene abundances in response to higher N availability under the 2-N frequency. Conclusions The NFGs abundances responded to N addition rates distinctly, highlighting that the driven processes involved in N cycling were altered by the N addition rates. The different effects of two N addition frequencies on NFG abundances demonstrated that conventional large and infrequent N fertilization cannot represent N deposition, and small and frequent N addition should be employed to project the effects of N deposition on microbial functional groups as well as on N transformations.

Journal Title

Journal of Soils and Sediments

Conference Title
Book Title
Edition
Volume

15

Issue

3

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Earth sciences

Environmental sciences

Soil biology

Agricultural, veterinary and food sciences

Persistent link to this record
Citation
Collections