The hydrology of riparian buffer zones; two case studies in an ephemeral and a perennial stream

No Thumbnail Available
File version
Author(s)
W. Rassam, David
Fellows, Christy
DeHayr, Robert
Hunter, Heather
Bloesch, Philip
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2006
Size
File type(s)
Location
License
Abstract

Riparian zones can provide a protective buffer between streams and adjacent land-based activities by removing nitrate from shallow groundwater flowing through them. Hydrological factors are an important influence on the effectiveness of riparian buffer zones in reducing pollutant loads delivered to streams. In this paper, we present results from a study of the hydrology of two riparian buffers belonging to an ephemeral and a perennial stream, which are part of a research project to study nitrogen transport and transformation processes in shallow groundwater in South-East Queensland, Australia. The investigation at the ephemeral site has shown that a shallow perched water table forms shortly after stream flow commences as a result of lateral flow from the stream to floodplain; it resides within the carbon-rich root zone and drains off after stream flow ceases. The low head gradient of 1% results in a low flow rate of about 6 cm/day along the floodplain, slow enough to allow effective removal of nitrate via denitrification to occur. The investigation at the perennial site has shown that water table dynamics within the floodplain are dissociated from the up-slope area except during over-bank flood events. During non-event conditions, there is low streamward gradient that results in a base flow component to the stream; the water table depth is about 3.5 m, hence missing most of the carbon-rich soils located close to the soil surface. During flood events, a reverse gradient towards the floodplain is formed; the streamward gradient is re-established after the flood wave passes. The water table fluctuates between 1.8 and 3.5 m under these conditions thus having a higher chance of interacting with more active floodplain sediments. Water stored in the floodplain has a residence time of 2-10 days, providing an opportunity for denitrification to reduce nitrate concentrations prior to water draining back to the stream.

Journal Title

Journal of Hydrology

Conference Title
Book Title
Edition
Volume

325

Issue
Thesis Type
Degree Program
School
Publisher link
DOI
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Persistent link to this record
Citation
Collections