Knowledge Graphs and Pretrained Language Models Enhanced Representation Learning for Conversational Recommender Systems

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
Qiu, Zhangchi
Tao, Ye
Pan, Shirui
Liew, Alan Wee-Chung
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2024
Size
File type(s)
Location
License
Abstract

Conversational recommender systems (CRSs) utilize natural language interactions and dialog history to infer user preferences and provide accurate recommendations. Due to the limited conversation context and background knowledge, existing CRSs rely on external sources such as knowledge graphs (KGs) to enrich the context and model entities based on their interrelations. However, these methods ignore the rich intrinsic information within entities. To address this, we introduce the knowledge-enhanced entity representation learning (KERL) framework, which leverages both the KG and a pretrained language model (PLM) to improve the semantic understanding of entities for CRS. In our KERL framework, entity textual descriptions are encoded via a PLM, while a KG helps reinforce the representation of these entities. We also employ positional encoding to effectively capture the temporal information of entities in a conversation. The enhanced entity representation is then used to develop a recommender component that fuses both entity and contextual representations for more informed recommendations, as well as a dialog component that generates informative entity-related information in the response text. A high-quality KG with aligned entity descriptions is constructed to facilitate this study, namely, the Wiki Movie Knowledge Graph (WikiMKG). The experimental results show that KERL achieves state-of-the-art results in both recommendation and response generation tasks. Our code is publicly available at the link: https://github.com/icedpanda/KERL.

Journal Title

IEEE Transactions on Neural Networks and Learning Systems

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

This work is covered by copyright. You must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a specified licence, refer to the licence for details of permitted re-use. If you believe that this work infringes copyright please make a copyright takedown request using the form at https://www.griffith.edu.au/copyright-matters.

Item Access Status
Note

This publication has been entered in Griffith Research Online as an advance online version.

Access the data
Related item(s)
Subject

Artificial intelligence

Persistent link to this record
Citation

Qiu, Z; Tao, Y; Pan, S; Liew, AW-C, Knowledge Graphs and Pretrained Language Models Enhanced Representation Learning for Conversational Recommender Systems, IEEE Transactions on Neural Networks and Learning Systems, 2024, pp. 1-15

Collections