Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er3+:LiYF4

No Thumbnail Available
File version
Author(s)
Bottger, Thomas
Pryde, GJ
Thiel, CW
Cone, RL
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2007
Size
File type(s)
Location
License
Abstract

Single-frequency diode lasers have been frequency stabilized to 1.5 kHz Allan deviation over 0.05-50 s integration times, with laser frequency drift reduced to less than 1.4 kHz/min, using the frequency reference provided by an ultranarrow inhomogeneously broadened Er3+:4I15/2?4I13/2 optical absorption transition at a vacuum wavelength of 1530.40 nm in a low-strain LiYF4 crystal. The 130 MHz full-width at half-maximum (FWHM) inhomogeneous line width of this reference transition is the narrowest reported for a solid at 1.5 孮 Strain-induced inhomogeneous broadening was reduced by using the single isotope 7Li and by the very similar radii of Er3+ and the Y3+ ions for which it substitutes. To show the practicability of cryogen-free cooling, this laser stability was obtained with the reference crystal at 5 K; moreover, this performance did not require vibrational isolation of either the laser or crystal frequency reference. Stabilization is feasible up to T=25 K where the Er3+ absorption thermally broadens to 500 MHz. This stabilized laser system provides a tool for interferometry, high-resolution spectroscopy, real-time optical signal processing based on spatial spectral holography and accumulated photon echoes, secondary frequency standards, and other applications such as quantum information science requiring narrow-band light sources or coherent detection.

Journal Title

Journal of Luminescence

Conference Title
Book Title
Edition
Volume

127

Issue

1

Thesis Type
Degree Program
School
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Atomic, molecular and optical physics

Physical chemistry

Persistent link to this record
Citation
Collections