Effects of cross-anisotropic soil behaviour on the wave-induced residual liquefaction in the vicinity of pipeline buried in elasto-plastic seabed foundations

No Thumbnail Available
File version
Author(s)
Zhao, H-Y
Jeng, D-S
Liao, CC
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
License
Abstract

In this paper, a two-dimensional integrated numerical model is developed to examine the influences of cross-anisotropic soil behaviour on the wave-induced residual liquefaction in the vicinity of a pipeline buried in a porous seabed. In the wave model, the RANS (Reynolds Averaged Navier–Stokes) equation is used to govern the wave motion. In the seabed model, the residual soil response in the vicinity of an embedded pipeline is considered with the 2-D elasto-plastic solution, where the phase-resolved shear stress is used as a source for the build-up of residual pore pressure. Classical Biot׳s consolidation equation is used for linking the solid-pore fluid interaction. The validation of the proposed integrated numerical model is conducted by the comparisons with the previous experimental data. Numerical examples show that the pore pressures can accumulate to a large value, thus resulting in a larger area of liquefaction potential in the given anisotropic soil compared to that with isotropic solution. The influences of anisotropic parameters on the wave-induced residual soil response in the vicinity of pipeline are significant. A high rate of pore pressure accumulation and dissipation is observed and the liquefaction potential develops faster as the anisotropic parameters increase. Finally, a simplified approximation based on a detailed parametric investigations is proposed for the evaluation of maximum liquefaction depth (zL) in engineering application.

Journal Title

Soil Dynamics and Earthquake Engineering

Conference Title
Book Title
Edition
Volume

80

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Geophysics

Civil engineering

Civil engineering not elsewhere classified

Persistent link to this record
Citation
Collections