Pavement crack detection based on saliency and statistical features
File version
Author(s)
Tang, Zhenmin
Zhou, Jun
Ding, Jundi
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
David Taubman and Min Wu
Date
Size
2147952 bytes
File type(s)
application/pdf
Location
Melbourne, AUSTRALIA
License
Abstract
Traditional pavement crack detection methods can not cope well with the complexity and diversity of noises in large image area. To solve this problem, we propose a novel unsupervised crack detection approach based on saliency and statistical features. The saliency is initially represented by a conspicuity map built from the intensity rarity and local contrast of image regions. Then spatial continuity of candidate crack pixels is measured based on the statistical features extracted in their neighborhood. This is followed by a Bayesian model to automatically update the saliency map. Finally, cracks are extracted after adaptive saliency map binarization. Experiments show that proposed method has generated consistent results as those by human visual inspection. The results have also proved the effectiveness of the proposed method in suppressing noises compared with several alternative methods.
Journal Title
Conference Title
2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013)
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Item Access Status
Note
Access the data
Related item(s)
Subject
Computer vision