Optimal secretion of alkali-tolerant xylanase in Bacillus subtilis by signal peptide screening

No Thumbnail Available
File version
Author(s)
Zhang, Weiwei
Yang, Mingming
Yang, Yuedong
Zhan, Jian
Zhou, Yaoqi
Zhao, Xin
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
License
Abstract

Xylanases are industrially important enzymes for xylan digestion. We experimentally screened over 114 Sec and 24 Tat pathway signal peptides, with two different promoters, for optimal production of an alkaline active xylanase (XynBYG) from Bacillus pumilus BYG in a Bacillus subtilis host. Though both promoters yielded highly consistent secretion levels (0.97 Pearson correlation coefficient), the Sec pathway was found to be more efficient than the Tat pathway for XynBYG secretion. Furthermore, the optimal signal peptide (phoB) for XynBYG secretion was found to be different from the optimal peptides for cutinase and esterase reported in previous studies. A partial least squares regression analysis further identified several statistically important variables: helical properties, amino acid composition bias, and the discrimination score in Signal P. These variables explain the observed 23 % variance in the secretion yield of XynBYG by the different signal peptides. The results also suggest that the helical propensity of a signal peptide plays a significant role in the beta-rich xylanase, but not in the helix-rich cutinase, suggesting a coupling of the conformations between the signal peptide and its cargo protein for optimal secretion.

Journal Title

Applied Microbiology and Biotechnology

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note

This publication has been entered into Griffith Research Online as an Advanced Online Version.

Access the data
Related item(s)
Subject

Microbiology not elsewhere classified

Persistent link to this record
Citation
Collections