Assessment of trend and seasonality in road accident data: An Iranian case study

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Razzaghi, A
Bahrampour, A
Baneshi, MR
Zolala, F
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2013
Size
File type(s)
Location
Abstract

Background: Road traffic accidents and their related deaths have become a major concern, particularly in developing countries. Iran has adopted a series of policies and interventions to control the high number of accidents occurring over the past few years. In this study we used a time series model to understand the trend of accidents, and ascertain the viability of applying ARIMA models on data from Taybad city. Methods: This study is a cross-sectional study. We used data from accidents occurring in Taybad between 2007 and 2011. We obtained the data from the Ministry of Health (MOH) and used the time series method with a time lag of one month. After plotting the trend, non-stationary data in mean and variance were removed using Box-Cox transformation and a differencing method respectively. The ACF and PACF plots were used to control the stationary situation. Results: The traffic accidents in our study had an increasing trend over the five years of study. Based on ACF and PACF plots gained after applying Box-Cox transformation and differencing, data did not fit to a time series model. Therefore, neither ARIMA model nor seasonality were observed. Conclusion: Traffic accidents in Taybad have an upward trend. In addition, we expected either the AR model, MA model or ARIMA model to have a seasonal trend, yet this was not observed in this analysis. Several reasons may have contributed to this situation, such as uncertainty of the quality of data, weather changes, and behavioural factors that are not taken into account by time series analysis.

Journal Title

International Journal of Health Policy and Management

Conference Title
Book Title
Edition
Volume

1

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Author(s) 2013. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Assessment

Road Accident

Seasonality

Time Series

Trend

Persistent link to this record
Citation

Razzaghi, A; Bahrampour, A; Baneshi, MR; Zolala, F, Assessment of trend and seasonality in road accident data: An Iranian case study, International Journal of Health Policy and Management, 2013, 1 (1), pp. 51-55

Collections