Coordinated control of three-phase AC and DC type EV-ESSs for efficient hybrid microgrid operations
File version
Accepted Manuscript (AM)
Author(s)
Hossain, MJ
Lu, Junwei
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
This paper presents a three-layered coordinated control to incorporate three-phase (3P) alternating current (AC) and direct current (DC) type electric vehicle energy storage systems (EV–ESSs) for improved hybrid AC/DC microgrid operations. The first layer of the algorithm ensures DC subgrid management by regulating the DC bus voltage and DC side power management. The second and third layer manages AC subgrid by regulating the AC bus voltage and the frequency by managing reactive and active power respectively. The multi-layered coordination is embedded into the microgrid central controller (MGCC) which controls the interlinking controller in between AC and DC microgrid and the interfacing controllers of the participating electric vehicles (EVs) and distributed generation (DG) units. The whole system is designed in MATLAB/SIMULINK® environment resembling the under construction microgrid at Griffith University, Australia. Extensive case studies are performed using real life irradiation data and commercial loads of the campus buildings. Impacts of homogeneous and heterogeneous single-phase EV charging are investigated to observe both balanced and unbalanced scenarios. Synchronization during the transition from the islanded to grid-tied mode is tested considering a contingency situation. From the comparative simulation results it is evident that the proposed controller exhibits effective, reliable and robust performance for all the cases.
Journal Title
Energy Conversion and Management
Conference Title
Book Title
Edition
Volume
122
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2016 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Electrical engineering
Electrical energy generation (incl. renewables, excl. photovoltaics)
Electrical energy storage
Mechanical engineering