A Feedback System for the Motor Learning of Skills in Golf
File version
Version of Record (VoR)
Author(s)
James, Daniel A
Rowlands, David D
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Chan, KM
Subic, A
Fuss, FK
Clifton, P
Date
Size
File type(s)
Location
Abstract
This paper presents a feedback GUI to improve the motor skills of a subject performing a golf putt. In this paper inertial sensors (gyroscopes) and video were used to capture the swing. Feedback was provided by a graphical user interface created in Matlab and displayed the video of the putt and quantitative values such as the putt tempo (ratio Backswing duration: Downswing duration) and score which gives an indication of how close the putt tempo is to the ideal rato of (2:1). A zero-crossing method was used to determine the swing phases and durations from the rotational velocity. The effectiveness of the feedback GUI was tested using 10 participants (4 experienced and 6 inexperienced). Each participant executed two sets of 15 putts over distances of 3m, 6m and 9m on an artificial turf putting surface with feedback provided by the GUI between the two sets of putts. The results indicated that overall tempo ratio of experienced and inexperienced participants became closer to 2:1 after the feedback. The standard deviation also decreased which meant that participants also improved their putting consistency. The results indicate that the participants were able to improve their skill in terms of putting performance indicators after using the feedback GUI.
Journal Title
Procedia Engineering
Conference Title
Book Title
Edition
Volume
60
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2013 The Authors. Published by Elsevier Ltd. Open access under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited. You may not alter, transform, or build upon this work.
Item Access Status
Note
Access the data
Related item(s)
Subject
Engineering
Biomechanical engineering